翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

map of lattices : ウィキペディア英語版
map of lattices
The concept of a lattice arises in order theory, a branch of mathematics. The Hasse diagram below depicts the inclusion relationships among some important subclasses of lattices.
== Proofs of the relationships in the map ==

1. A boolean algebra is a complemented distributive lattice. (def)
2. A boolean algebra is a heyting algebra.〔Rutherford (1965), p.77.〕
3. A boolean algebra is orthocomplemented.〔Rutherford (1965), p.32-33.〕
4. A distributive orthocomplemented lattice is orthomodular.〔(PlanetMath: orthomodular lattice )〕
5. A boolean algebra is orthomodular. (1,3,4)
6. An orthomodular lattice is orthocomplemented. (def)
7. An orthocomplemented lattice is complemented. (def)
8. A complemented lattice is bounded. (def)
9. An algebraic lattice is complete. (def)
10. A complete lattice is bounded.
11. A heyting algebra is bounded. (def)
12. A bounded lattice is a lattice. (def)
13. A heyting algebra is residuated.
14. A residuated lattice is a lattice. (def)
15. A distributive lattice is modular.〔Rutherford (1965), p.22.〕
16. A modular complemented lattice is relatively complemented.〔Rutherford (1965), p.31.〕
17. A boolean algebra is relatively complemented. (1,15,16)
18. A relatively complemented lattice is a lattice. (def)
19. A heyting algebra is distributive.〔Rutherford (1965), Th.25.1 p.74.〕
20. A totally ordered set is a distributive lattice.
21. A metric lattice is modular.〔Rutherford (1965), Th.8.1 p.22.〕
22. A modular lattice is semi-modular.〔Rutherford (1965), p.87.〕
23. A projective lattice is modular.〔Rutherford (1965), p.94.〕
24. A projective lattice is geometric. (def)
25. A geometric lattice is semi-modular.〔Rutherford (1965), Th.32.1 p.92.〕
26. A semi-modular lattice is atomic.〔Rutherford (1965), p.89.〕
27. An atomic lattice is a lattice. (def)
28. A lattice is a semi-lattice. (def)
29. A semi-lattice is a partially ordered set. (def)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「map of lattices」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.